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Abstract
We investigate the motion of a tagged spin in a ferromagnetic Ising chain
evolving under Kawasaki dynamics. At equilibrium, the displacement is
Gaussian, with a variance increasing as At1/2. The temperature dependence
of the prefactor A is derived exactly. At low temperature, where the static
correlation length ξ is large, the mean square displacement increases as
(t/ξ 2)2/3 in the coarsening regime, i.e., as a finite fraction of the mean square
domain length. The case of totally asymmetric dynamics, where (+) (resp.
(−)) spins move only to the right (resp. to the left), is also considered. In the
steady state, the displacement variance increases as Bt2/3. The temperature
dependence of the prefactor B is derived exactly, using the Kardar–Parisi–
Zhang theory. At low temperature, the displacement variance increases as
t/ξ 2 in the coarsening regime, again proportionally to the mean square domain
length.

PACS numbers: 05.70.Ln, 64.60.My, 75.40.Gb

1. Introduction

The purpose of this work is to investigate the random displacement of a tagged spin in an
Ising chain evolving under Kawasaki dynamics [1] from a disordered, unmagnetized initial
configuration. Many features of the one-dimensional kinetic Ising–Kawasaki model are by
now well understood [2–6], although its complete analytical description is still lacking. In
Kawasaki dynamics, only pairs of opposite spins are flipped, so that the magnetization is locally
conserved. As a consequence, the motion of an individual spin can be traced throughout the
history of the system.
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We aim at characterizing the asymptotic subdiffusive nature of this displacement, both
at equilibrium and in the low-temperature coarsening regime, first for symmetric, then for
asymmetric dynamics. We use both analytical reasoning and numerical simulations. In
particular, identifying (+) (resp. (−)) spins with particles (resp. holes), the Ising–Kawasaki
chain is recognized as a one-dimensional stochastic lattice gas, where particles experience
hard-core repulsion, as well as short-range attractive interactions originating from the
Hamiltonian (1.1) of the spin system. This identification allows us to borrow concepts and
methods from the realm of interacting particle systems [7–12]. Finally, this study gives some
insight into the phenomenon of the cage effect, a subject of much current interest in glassy
systems [13].

Consider a ferromagnetic chain of Ising spins σn = ±1 (n = 1, . . . , N), with Hamiltonian

H = −
∑

n

σnσn+1 (1.1)

and periodic boundary conditions. Since individual spins can be traced throughout the
evolution, a label k = 1, . . . , N can be attributed to each spin. The algebraic displacement
rk(t) of spin number k at time t has an obvious definition: it is initialized at rk(0) = 0,
and then increased (resp. decreased) by one unit whenever spin number k moves one step
to the right (resp. to the left). This definition of displacement wraps around the sample,
thanks to the periodic boundary conditions. We shall be mostly interested in moments of the
displacement, defined as averages over all the thermal histories, for a given tagged spin k in a
given initial configuration. This is indeed the right procedure in the asymmetric case. We shall
successively consider symmetric (section 3) and asymmetric (section 4) Kawasaki dynamics,
both at equilibrium and out of equilibrium. Section 5 contains a discussion, and a summary
of our main results, listed in table 3.

2. Ising–Kawasaki chain

Let us summarize the main features of the model which will be needed hereafter.

2.1. Symmetric dynamics

We choose the heat-bath rule to define the stochastic dynamics, because of its peculiar
property that the steady state is independent of the applied electric field in the asymmetric
case [9, 14] (see below). For a pair of opposite spins (σn + σn+1 = 0), the move
(σn → −σn, σn+1 → −σn+1) is realized with the probability

W(δH) = 1

exp(βδH) + 1
(2.1)

where δH = 2(σn−1σn + σn+1σn+2) = 0,±4 is the energy difference between the configurations
after and before the move. The heat-bath rule (2.1) obeys detailed balance with respect to the
Hamiltonian (1.1) at temperature T = 1/β, i.e., W(δH) = W(−δH) exp(−βδH). The moves
corresponding to the three possible values of the difference δH are listed in table 1, with the
corresponding acceptance probabilities.

At finite temperature, the three types of moves take place, and the system relaxes to
thermal equilibrium. The equilibrium state is characterized by independent bond variables
sn = σnσn+1 = ±1, with

sn =
{

−1 with probability �

+1 with probability 1 − �
(2.2)
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Table 1. Types of moves in symmetric Kawasaki dynamics, and corresponding acceptance
probabilities with the heat-bath rule.

Type δH Acc. probability Moves

− + −+ → − − ++
Condensation −4 e4β/(e4β + 1)

+ − +− → + + −−
+ + −+ ↔ + − ++

Diffusion 0 1/2 − − +− ↔ − + −−
+ + −− → + − +−

Evaporation +4 1/(e4β + 1) − − ++ → − + −+

where

� = 1

e2β + 1
is the density of domain walls. The mean energy density is therefore E = −〈sn〉 = 2� − 1 =
− tanh β, and spin correlations read

〈σ0σn〉 = (tanh β)|n| = exp(−|n|/ξ)

where the equilibrium correlation length, ξ = 1/|ln tanh β| = 1/|ln(1 − 2�)|, diverges as

ξ ≈ e2β

2
at low temperature. Finally, the reduced susceptibility reads

χ =
∑

n

〈σ0σn〉 = e2β. (2.3)

At zero temperature, evaporation moves are not permitted. The system gets blocked
into metastable configurations, consisting of domains of at least two parallel spins. Such
metastable configurations cannot evolve under the sole effect of condensation and diffusion
moves. A study of the statistics of the metastable configurations reached by zero-temperature
dynamics can be found in [15]. In particular the blocking time is rather short, increasing as
(ln N)3 for a system of N spins.

At low but nonzero temperature, evaporation moves take place with the small probability

ε = 1

e4β + 1
≈ 1/(4ξ 2) � 1. (2.4)

Starting from a disordered initial configuration, the system is first attracted into a metastable
configuration, from where it escapes on the slow time scale εt ∼ t/ξ 2. For t/ξ 2 � 1, the
system enters a self-similar coarsening regime, where the typical domain length increases as
L ∼ (t/ξ 2)1/3 [2, 3, 6] (see (3.14)). Finally, the domain length saturates to its equilibrium
value

Leq = 2

1 + E
= 1

�
= e2β + 1 ≈ 2ξ.

The corresponding equilibration time scales as

τeq ∼ ξ 5. (2.5)

2.2. Asymmetric dynamics

Assume that (+) spins (resp. (−) spins) are positively (resp. negatively) charged. In the
presence of an electric field, they move preferentially to the right (resp. to the left). For
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Table 2. Types of moves in totally asymmetric Kawasaki dynamics, and corresponding acceptance
probabilities with the heat-bath rule.

Type δH Acc. probability Move

Condensation −4 e4β/(e4β + 1) − + −+ → − − ++
+ + −+ → + − ++

Conduction 0 1/2 − + −− → − − +−
Evaporation +4 1/(e4β + 1) + + −− → + − +−

the sake of simplicity, consider the limit of totally asymmetric dynamics [4, 5], where only
+− → −+ moves are allowed. These moves are listed in table 2, with the corresponding
acceptance probabilities.

Under asymmetric dynamics at finite temperature, the driven system reaches a
nonequilibrium steady state, where (+) spins (resp. (−) spins) are advected with a constant
drift velocity V (resp. −V ), to be derived below (see (4.4)). All the static quantities, such
as equal-time correlations, coincide with their equilibrium values [9, 14] for a whole class of
stochastic dynamical rules, including the heat-bath rule (2.1). This does not hold with the
Metropolis rule.

At zero temperature, the system again gets blocked into metastable configurations,
consisting of domains of at least two parallel spins. The statistics of metastable configurations
is different from that obtained in the symmetric case. This difference is explicitly apparent
in the special case of restricted zero-temperature dynamics (descent dynamics), where only
condensation moves are allowed. In this situation, analytical results can be obtained, both for
the symmetric case [16, 17] and the asymmetric one [18].

At low temperature, the system exhibits self-similar domain growth for t/ξ 2 � 1, with a
typical domain length increasing as L ∼ (t/ξ 2)1/2 [4, 5] (see (4.8)). The equilibration time
scales as

τeq ∼ ξ 4. (2.6)

3. Symmetric dynamics

3.1. Mean square displacement at equilibrium

Assume that the system is at thermal equilibrium, evolving under symmetric Kawasaki
dynamics.

Consider first the case of infinite temperature. Then all the allowed moves have equal
acceptance probabilities of 1/2. Particles (i.e., (+) spins) hop along the chain, with the hard-
core constraint that sites are occupied by at most one particle. The motion of holes (i.e.,
(−) spins) follows by complementarity. The process thus defined is known as the symmetric
exclusion process (SEP) [7, 10–12]. The particle density ρ is fixed by the magnetization of
the initial configuration: M = 〈σn〉 = 1 − 2ρ = 0, hence ρ = 1/2. The displacement of
individual particles is asymptotically Gaussian, with a variance increasing as t1/2 [7, 19].

We now show that the same holds for the system at equilibrium at any finite temperature,
i.e., we predict a subdiffusive displacement of tagged particles, with a symmetric Gaussian
dispersion profile, whose variance scales as

〈r2〉 ≈ At1/2. (3.1)

The temperature dependence of the amplitude A is given in (3.11).
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In order to do so, we use the Edwards–Wilkinson (EW) continuum theory [20]. The
starting point of this approach consists in mapping the problem onto an interface model
[21–23], by defining the height variable

hn =
n∑

m=−N

σm. (3.2)

The reference point n = −N does not actually matter, since only height differences will be
considered hereafter. One has, e.g.,

〈(hm − hn)
2〉 ≈ |m − n|χ (3.3)

for large separations (|m − n| � ξ) at equilibrium, where the compressibility χ is just the
reduced susceptibility evaluated in (2.3). Height and displacement are related by the following
approximate relationship [21–23]:

hn(t + τ) − hn(t) = −2Nn(t + τ, t) ≈ −(r(t + τ) − r(t))n. (3.4)

In this expression, Nn(t +τ, t) is the net number of particles ((+) spins) which have crossed the
bond (n, n + 1) between times t and t + τ , particles moving to the right (resp. to the left) being
counted positively (resp. negatively), while (r(t + τ) − r(t))n is the displacement between
times t and t + τ of particles in the neighbourhood of site n. Particles indeed move together
almost rigidly, as the system has a finite static compressibility χ (see (3.3)).

In the continuum limit, the height h(x, t) ≈ −r(x, t) obeys the EW equation [21, 22]

∂h

∂t
= D

∂2h

∂x2
+ η(x, t) (3.5)

where η(x, t) is a Gaussian white noise, such that 〈η(x, t)η(x ′, t ′)〉 = 2�δ(x − x ′)δ(t − t ′).
In Fourier space, (3.5) yields

ĥ(q, t) = ĥ(q, 0) e−Dq2t +
∫ t

0
dsη̂(q, s) e−Dq2(t−s).

We thus obtain the following expression:

〈(h(x, t + τ) − h(x, t))2〉 → 2�

∫ ∞

−∞

dq

2π

1 − e−Dq2τ

Dq2
= 2�

(
τ

πD

)1/2

for the height (or displacement) correlation function at equilibrium (t → ∞). The noise
intensity � can be evaluated from the height correlation at equilibrium,

〈(h(x, t) − h(0, t))2〉 → 2�

∫ ∞

−∞

dq

2π

1 − cos qx

Dq2
= �x

D
.

Comparing with (3.3) yields the identification � = Dχ , and finally

A = 2χ

(
D

π

)1/2

. (3.6)

We now estimate the magnetization diffusion coefficient D. A hierarchy of nonlinear kinetic
equations for spin correlation functions can be written by summing the contributions of the
moves listed in table 1. For the magnetization, we obtain

d〈σn〉
dt

= Sn−1 + Sn+1 − 2Sn (3.7)

with

Sn = 1

2
〈σn〉 +

e4β − 1

4(e4β + 1)
〈σn−1σnσn+1 − σn−1 − σn − σn+1〉. (3.8)
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The nonlinear equation (3.7) cannot be solved in full generality, except at infinite temperature
[24], where it becomes linear. However, since (3.7) already involves a second-order difference,
it is sufficient for the present purpose to evaluate the uniform value S of Sn in the finite-
temperature equilibrium state of the Ising chain with a small uniform magnetization M = 〈σn〉.
Indeed, (3.7) implies

D = lim
M→0

S

M
. (3.9)

The explicit calculation of S can be performed by means of the transfer-matrix formalism.
Introducing a uniform reduced magnetic field H, the transfer matrix reads

T =
(

eβ+H e−β−H

e−β+H eβ−H

)
.

The leading eigenvalue of T and the corresponding eigenvectors read

� = eβ cosh H + e−β(1 + e4β sinh2 H)1/2

〈L| = (� − eβ−H , e−β−H ) |R〉 =
(

e−β−H

� − eβ+H

)
.

We have in particular

M = 〈L|S|R〉
〈L|R〉

where the spin operator reads

S =
(

1 0
0 −1

)
hence

M = e2β sinh H

(1 + e4β sinh2 H)1/2
eH = M + (M2 + e4β(1 − M2))1/2

e2β(1 − M2)1/2
. (3.10)

The equilibrium value of any spin correlation can be expressed in terms of matrix elements
involving the eigenvectors 〈L| and |R〉, and the spin operator S. Using the second expression
of (3.10), results can be written in terms of M alone. We have thus

〈σn−1σnσn+1〉 = 〈L|ST ST S|R〉
�2〈L|R〉

= [8(M2 + e4β(1 − M2))1/2 + e4β(e4β − 6)(1 − M2) − 3 − 5M2]M

(e4β − 1)2(1 − M2)

≈ (e2β − 1)(e2β + 3)

(e2β + 1)2
M (M → 0).

Inserting the latter estimate into (3.8), (3.9) results in

D = 2

(e2β + 1)(e4β + 1)
= 2ε�.

Finally, using (3.6), we obtain the temperature dependence of the prefactor A:

A = χ

(
8ε�

π

)1/2

=
(

8e4β

π(e2β + 1)(e4β + 1)

)1/2

. (3.11)

In the infinite-temperature case, we thus recover ASEP = (2/π)1/2 [7, 19].
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Figure 1. Plot of the amplitude A (see (3.1)) of the spin displacement for symmetric equilibrium
dynamics, against e−β . Full symbols: measured amplitude for an equilibrated initial condition
(initial temperature = final temperature). Full line: prediction (3.11) of EW theory. Open symbols:
measured amplitude for a disordered initial condition (infinite initial temperature). Dashed line:
polynomial fit to the latter data, meant as a guide to the eye.

In the low-temperature regime, the amplitude A vanishes as

A ≈ (8/π)1/2 e−β ≈ 2(πξ)−1/2 (3.12)

hence the low-temperature scaling form 〈r2〉 ∼ (t/ξ)1/2. The latter result is compatible with
a smooth crossover, for times t ∼ τeq ∼ ξ 5 (see (2.5)), between the behaviour (3.16) in the
coarsening regime and the behaviour (3.1) in the equilibrium regime.

In order to test the accuracy of Monte Carlo numerical simulations, which will be
used more extensively hereafter, we have checked the prediction (3.11) against values of A

obtained by extrapolating numerical results for 〈r2〉 at equilibrium, for various temperatures.
Figure 1 shows a plot of A against e−β , both for an unmagnetized equilibrated initial condition
(initial temperature = final temperature), built recursively using (2.2), and for an unmagnetized
disordered initial condition (infinite initial temperature). In the equilibrated case, the measured
values of the amplitude are in perfectly good agreement with (3.11). In the disordered case, A
is found to be systematically smaller than the predicted value (3.11). The amplitude A actually
depends continuously on the initial condition, as can be observed by preparing the system at
equilibrium, at a temperature different from the chosen final temperature. This dependence
on the initial configuration is somewhat surprising, since the amplitude A characterizes the
long-time behaviour (3.1) of the displacement of a tagged particle. Let us mention that data
points for lower temperatures are more and more difficult to obtain, because the equilibrium
regime is reached for t ∼ τeq ∼ ξ 5 ∼ e10β .

3.2. Mean square displacement in the coarsening regime

Consider the displacement of a tagged particle after a quench from an infinite-temperature
disordered initial configuration to a low temperature such that ξ � 1.

The system is first attracted into a metastable configuration, from where it escapes on
the slow time scale εt ∼ t/ξ 2 (see section 2.1). Correspondingly 〈r2〉 reaches first a plateau
value, from which it escapes on the same time scale. For t/ξ 2 � 1, the system enters a
self-similar coarsening regime, and 〈r2〉 is observed to increase as (t/ξ 2)2/3. Finally, as the
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domain length saturates to its equilibrium value, for t ∼ τeq ∼ ξ 5, 〈r2〉 crosses over to its
equilibrium behaviour described in section 3.1.

We now provide an explanation for the observed anomalous diffusion for t/ξ 2 � 1. We
use the picture of Cordery et al [2] and Cornell et al [3] for the low-temperature coarsening
regime (see [25] for further developments). Consider a (+) spin evaporating from the right
boundary of a (+) domain, of length, say, �1. It then undergoes a free random walk inside the
right neighbouring (−) domain, of length �, until it condenses, either (i) to the (+) domain
from where it had evaporated, or (ii) to the next (+) domain to the right, of length, say, �2.
Event (i) amounts to no domain displacement at all, while event (ii) amounts to moving the
(−) domain by one lattice spacing to the left, hence �1 → �1 − 1, and �2 → �2 + 1. The
probability of event (ii), knowing the spin has evaporated, is exactly 1/�. This is a well-known
result in the gambler’s ruin problem [26].

In other words, integrating over the fast processes (diffusion and condensation), one is
led to an effective description of the coarsening process in terms of diffusion and annihilation
of domains, where each domain performs a random walk independently of the others, with a
diffusion constant

D(�) ≈ ε

�
≈ 1

4ξ 2�
(3.13)

for a domain of length �. When a domain length shrinks down to zero, the two
neighbouring domains coalesce. Since a domain of length L evolves on a time scale of
order t ∼ L2/D(L) ∼ ξ 2L3, this picture predicts the power-law growth [2, 3, 6]

L ≈ aL(t/ξ 2)1/3 (3.14)

where the amplitude aL is some non-universal number of order unity. Note that the range of
validity of the coarsening regime (1 � L � ξ , or ξ 2 � t � τeq ∼ ξ 5) is increasingly larger
at lower temperatures. In this regime, the distribution of domain lengths has the scaling form

P(�) = 1

L
f

(
�

L

)
. (3.15)

Coming back to the displacement of a tagged particle, the scenario of domain diffusion
and annihilation described above demonstrates that a tagged particle (i.e., a (+) spin) exhibits
two kinds of motion in the coarsening regime:

(a) Most of the time, the tagged particle remains inside a (+) domain. This domain, and the
tagged particle contained in it, perform a random walk, with an instantaneous diffusion
constant given by (3.13). These moves generate a Gaussian displacement, such that

d〈r2〉
dt

≈ 2〈D(�)〉 ≈ 1

2ξ 2

〈
1

�

〉
.

The scaling laws (3.15) and (3.14) imply 〈1/�〉 ∼ 1/L ∼ (t/ξ 2)−1/3. As a consequence,
the number of moves of type (a) and the corresponding mean square displacement up to
time t both scale as N(a) ∼ 〈r2〉 ∼ L2 ∼ (t/ξ 2)2/3.

(b) From time to time, the tagged particle evaporates from the boundary of the (+) domain
to which it belongs and condenses to a neighbouring domain. The displacement of
the particle in such a move is the length � of the (−) domain which is crossed. It
is therefore distributed according to the law (3.15). Furthermore, for a given tagged
particle, successive such displacements alternate in sign, because the particle can only
bounce between two neighbouring (+) domains. The number of such moves scales
as N(b) ∼ L ∼ (t/ξ 2)1/3, and the corresponding random displacement scales as
〈r2〉 ∼ L2 ∼ (t/ξ 2)2/3.
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Figure 2. Plot of the mean domain length L in the coarsening regime with symmetric dynamics,
against (t/ξ2)1/3. Symbols: data for several values of ξ . Full straight line: least-squares fit of the
data (first three points excluded), confirming (3.14). The slope yields aL ≈ 1.34.

Figure 3. Plot of the root-mean-square displacement 〈r2〉1/2 in the coarsening regime with
symmetric dynamics, against (t/ξ2)1/3. Symbols: data for several values of ξ . Full straight
line: least-squares fit of the data (first three points excluded), confirming (3.16). The slope yields
ar ≈ 0.71.

To sum up, moves of either type give similar contributions to 〈r2〉. We thus predict the
power law

〈r2〉 ≈ a2
r (t/ξ

2)2/3 (3.16)

where the amplitude ar is of order unity. As a consequence, the dimensionless ratio 〈r2〉/L2

approaches a non-trivial universal limit value

Q = lim
t/ξ 2→∞

〈r2〉
L2

= (ar/aL)2 (3.17)

in the late stages of the coarsening regime. The sum of moves of type (a) is asymptotically
Gaussian. The distribution of the sum of moves of type (b) is not known a priori, although it
might be expected to be Gaussian as well.

We have checked the above predictions, and tested the Gaussian character of the
distribution of the displacement, by means of numerical simulations. Figures 2 and 3 show
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Figure 4. Plot of the kurtosis K = 〈r4〉/〈r2〉2 in the coarsening regime with symmetric dynamics,
against (t/ξ2)−2/3. Symbols: data for several values of ξ . Full line: polynomial fit demonstrating
a smooth convergence to the limit value K = 3 of the Gaussian law.

plots of the mean domain length L, obtained by measuring the energy density E = −1 + 2/L,
and of the root-mean-square displacement 〈r2〉1/2, in the coarsening regime, against the
scaling time variable (t/ξ 2)1/3, for several values of ξ � 1. The data are averaged over 1000
independent systems of 2000 spins, for times up to t = 1000 ξ 2. A local smoothing procedure
has been applied to the raw data. The observed data collapse and linear behaviour confirm the
power laws (3.14), (3.16), while least-squares fits yield

aL ≈ 1.34 ar ≈ 0.71 Q ≈ 0.28.

Figure 4 shows a plot of the kurtosis K = 〈r4〉/〈r2〉2, against (t/ξ 2)−2/3. The data
smoothly extrapolate towards the value K = 3 of the Gaussian law, with a correction
proportional to (t/ξ 2)−2/3 ∼ 1/L2. This observation strongly suggests that the asymptotic
law of the displacement is Gaussian.

4. Asymmetric dynamics

4.1. Displacement variance in the steady state

The system is assumed to be in the steady state reached under totally asymmetric Kawasaki
dynamics at finite temperature.

Consider first infinite-temperature dynamics. Particles, that is (+) spins, hop to the right,
with a hard-core constraint. This process is known as the totally asymmetric exclusion process
(ASEP) [7, 10–12]. The displacement of individual particles is asymptotically described [21,
22] by the nonlinear Kardar–Parisi–Zhang (KPZ) theory [27]. This theory predicts that, for a
given tagged spin in a given initial configuration, the displacement at time t consists of a drift
with uniform velocity, and a thermal random displacement, increasing typically as t1/3. This
anomalous, subdiffusive width is masked by the usual diffusive fluctuations in t1/2 whenever
the displacement is averaged either over different spins or over different initial configurations.
These peculiar features have been underlined in [28, 29].
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At finite temperature, we expect the same to hold at long times, i.e., we predict that the
motion of a tagged particle consists of a deterministic drift and a subdiffusive thermal motion,
according to

〈r〉 ≈ V t 〈r2〉c ≈ Bt2/3. (4.1)

The temperature dependence of the velocity V and of the amplitude B is now derived,
using the KPZ theory. The most general KPZ equation reads

∂h

∂t
= µ + ν

∂h

∂x
+ D

∂2h

∂x2
+

λ

2

(
∂h

∂x

)2

+ η(x, t). (4.2)

Unlike (3.5), this equation cannot be solved explicitly. However, all the quantities of interest
can be predicted [21, 22] from the sole knowledge of the steady-state current J (M) for a
nonzero magnetization M = 1 − 2ρ, where ρ is the particle density. This current can be
evaluated by summing the contributions of the moves listed in table 2. The corresponding
steady-state probabilities can again be derived by means of the transfer-matrix formalism.
Let P± = (1 ± S)/2 be the projectors onto the spin states ±. The first move involves the
probability p−+−+ of observing the pattern − + −+:

p−+−+ = 〈L|P−T P+T P−T P+|R〉
�3〈L|R〉

= (3 + M2 + e4β(1 − M2))(M2 + e4β(1 − M2))1/2 − (1 + 3M2) − 3e4β(1 − M2)

2(e4β − 1)3(1 − M2)
.

Taking into account all the allowed moves, we obtain

J (M) = e4β

e4β + 1
p−+−+ +

1

2
(p++−+ + p−+−−) +

1

e4β + 1
p++−−

= 2M2 + e4β(1 − M2) − (1 + M2)(M2 + e4β(1 − M2))1/2

2(e8β − 1)(1 − M2)
. (4.3)

This expression shows that J (M) = J0 + J2M
2 + · · · is an even function of M, as expected

from the spin symmetry of the dynamics, i.e., the invariance of the dynamical rules under the
simultaneous flipping of all the spins.

As a consequence of (3.2) and (3.4), we are led to identify ∂h/∂t ≈ −2∂N/∂t ≈ −2J

and ∂h/∂x ≈ M in the continuum limit. Therefore, in (4.2) we must have

µ = −2J0 ν = 0 λ = −4J2.

Furthermore, the zero-magnetization velocity V is such that J0 = ρV with ρ = 1/2, hence
V = 2J0 = −µ. Equation (4.3) yields the explicit results,

V = e2β

(e2β + 1)(e4β + 1)
= χε� λ = 3e2β − 1

e2β(e2β + 1)(e4β + 1)
. (4.4)

According to the KPZ scaling theory [21, 22, 30], for a given tagged spin in a given initial
configuration, the displacement fluctuation is asymptotically distributed according to

r − 〈r〉 ≈
(

χ2λt

2

)1/3

X =
(

e2β(3e2β − 1)

2(e2β + 1)(e4β + 1)

)1/3

X.

The reduced variable X has a universal distribution, related to the Tracy–Widom law of the
largest eigenvalue of a complex Hermitian random matrix. This distribution, which attracted
much interest in recent years [31], can be expressed in terms of a solution of a Painlevé
transcendental equation.
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Figure 5. Plot of the amplitude B (see (4.1)) of the spin displacement in the steady-state regime of
asymmetric dynamics, against e−4β/3. Symbols: data. Full line: prediction (4.6) of KPZ theory.

As a consequence, the reduced central moments

Kn = 〈(r − 〈r〉)n〉
〈r2〉n/2

c

= 〈(X − 〈X〉)n〉
〈X2〉n/2

c

(4.5)

have non-trivial universal values. The variance 〈X2〉c = 0.638 05, and the reduced moments
K3 = 0.2935,K4 = 0.1652, are known numerically to a high accuracy [31]. Finally, the
amplitude B entering (4.1) reads

B =
(

e2β(3e2β − 1)

2(e2β + 1)(e4β + 1)

)2/3

〈X2〉c︸ ︷︷ ︸
0.638 05

. (4.6)

In the low-temperature regime, we thus obtain

V ≈ e−4β ≈ 1/(4ξ 2) B ≈ (3/2)2/3〈X2〉c︸ ︷︷ ︸
0.836 08

e−4β/3 ≈ (3/4)2/3〈X2〉c︸ ︷︷ ︸
0.526 70

ξ−2/3 (4.7)

hence 〈r〉 ∼ t/ξ 2, 〈r2〉c ∼ (t/ξ)2/3. These results are compatible with the existence of
a smooth crossover between the coarsening and steady-state regimes, for times of order
t ∼ τeq ∼ ξ 4 (see (2.6)).

Figure 5 shows a plot of the amplitude B obtained by numerical simulations, against
e−4β/3. Data for lower temperatures are again very costly. The non-monotonic dependence
of B on temperature is accurately described by the analytical prediction (4.6) from the KPZ
theory. The data for the drift velocity V are even more accurate, and indistinguishable from the
prediction (4.4). At variance with the case of symmetric dynamics, the values of V and B do
not depend on the initial condition. The measured values indeed coincide with the theoretical
predictions, up to statistical errors, both for an equilibrated and a disordered initial condition.

4.2. Displacement variance in the coarsening regime

We first summarize the known features of the low-temperature domain-growth process in
the presence of a bias [4, 5]. As in section 3.2, the relevant time scale is εt ∼ t/ξ 2, since
evaporation moves take place with the small probability ε (cf (2.4)).

A (+) spin evaporating from the right boundary of a (+) domain propagates ballistically
through the right neighbouring (−) domain, and condenses to the left boundary of the next (+)
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domain to the right. The converse situation of a (+) spin evaporating from the left boundary of
a (+) domain is not permitted. Integrating over the fast processes (condensation and ballistic
propagation) yields the following description of the dynamics in terms of domain shifting and
annihilation [4, 5]. Each (+) (resp. (−)) domain performs a biased walk to the right (resp.
to the left), with a hopping rate ε, irrespective of its length. When a domain length shrinks
to zero, the two neighbouring domains coalesce. As a consequence, the whole pattern of (+)

(resp. (−)) domains is advected with a mean velocity V (resp. −V ). As long as the effective
description in terms of domain dynamics holds, the mean velocity is given by V ≈ ε, just as
in the steady-state regime (see (4.7)). The fluctuations around the mean ballistic motion of a
given domain are diffusive, with a diffusion constant D ≈ ε.

In the self-similar coarsening regime (t/ξ 2 � 1), the distribution of domain lengths is
still of the form (3.15). The behaviour of the mean domain length L is now driven by the
diffusive fluctuations. Since a domain of length L evolves on a time scale εt ∼ L2, the
following power-law growth holds [4, 5]:

L ≈ bL(t/ξ 2)1/2 (4.8)

where the amplitude bL is some non-universal number of order unity.
In the coarsening regime, a tagged particle therefore exhibits two kinds of motion:

(a) Most of the time, the tagged particle remains inside a (+) domain. This domain, and the
tagged particle contained in it, perform a biased random walk, characterized by a mean
velocity and a diffusion constant V ≈ D ≈ ε ≈ 1/(4ξ 2).

(b) From time to time, the tagged particle evaporates from the right end of the (+) domain
to which it belongs and condenses to the left end of the neighbouring (+) domain to the
right. The displacement of the particle in such a move is the length � of the (−) domain
which is crossed. It is therefore of order L.

As in the symmetric case, moves of either type give similar contributions to 〈r2〉. We thus
expect, for a given particle and a given initial configuration, a dispersion of the form

〈r2〉c ≈ b2
r t/ξ

2 (4.9)

for t � ξ 2, where the amplitude br is of order unity. As a consequence, the dimensionless
ratio 〈r2〉c/L2 has a non-trivial universal limit value

R = lim
t/ξ 2→∞

〈r2〉c
L2

= (br/bL)2 (4.10)

in the late stages of the coarsening regime. As the displacement is biased, all the higher central
moments Kn (4.5) are expected to be non-trivial for finite times. If, however, the dispersion
is asymptotically Gaussian, as it is in the symmetric case, the cumulants associated with the
moments Kn should fall off to zero in the t/ξ 2 → ∞ limit.

The following results of numerical simulations corroborate the above predictions, and
suggest that the distribution of the displacement is again asymptotically Gaussian. Figures 6
and 7 show plots of the mean domain length L and of the displacement width 〈r2〉1/2

c , against
the scaling time variable (t/ξ 2)1/2. The statistics is similar to that of figures 2 and 3. The
observed data collapse and linear behaviour confirm the power laws (4.8), (4.9). The data for
the mean domain length exhibit appreciable corrections to scaling, which were hardly visible
in the case of symmetric dynamics. Least-squares fits yield

bL ≈ 0.70 br ≈ 0.42 R ≈ 0.36.

Figure 8 shows a plot of the reduced third central moment K3 (see (4.5)) against (t/ξ 2)−1.
The observed fall-off to zero strongly suggests that the dispersion is asymptotically Gaussian
in the late stages of the coarsening regime. We have checked that K4 − 3 also decays to zero,
albeit with larger statistical errors.
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Figure 6. Plot of the mean domain length L in the coarsening regime with asymmetric dynamics,
against (t/ξ2)1/2. Symbols: data for several values of ξ . Dashed lines: guides to the eye,
emphasizing the corrections to scaling. Full straight line: least-squares fit of the data for ξ = 30
(first point excluded), confirming (4.8). The slope yields bL ≈ 0.70.

Figure 7. Plot of the displacement width 〈r2〉1/2
c in the coarsening regime with asymmetric

dynamics, against (t/ξ2)1/2. Symbols: data for several values of ξ . Full straight line: least-
squares fit confirming (4.9). The slope yields br ≈ 0.42.

5. Discussion

As shown in this work, the motion of a tagged spin in a ferromagnetic Ising chain evolving
under Kawasaki dynamics is akin to anomalous diffusion. The variance of the displacement,
〈r2〉c ≡ 〈r2〉−〈r〉2, increases algebraically in time, with an exponent depending on the regime
considered.

In the steady state at finite temperature, the present system is in the universality class of
well-known interacting particle systems, the SEP in the symmetric case and the ASEP in the
asymmetric case, with subdiffusive behaviours 〈r2〉 ≈ At1/2 and 〈r2〉c ≈ Bt2/3, respectively.
Exploiting the relationship with the corresponding continuum theories, EW in the symmetric
case and KPZ in the asymmetric case, the explicit temperature dependence of the amplitudes
A and B is derived exactly (see (3.11) and (4.6)).
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Figure 8. Plot of the reduced third central moment (reduced cumulant) K3 in the coarsening
regime with asymmetric dynamics, against (t/ξ2)−1. Symbols: data for several values of ξ . Full
line: polynomial fit demonstrating the fall-off to zero.

Diffusive particle systems with interactions beyond the usual hard-core repulsion have
been the subject of some recent works. The model for polymer crystallization introduced in
[32] is equivalent to asymmetric Kawasaki dynamics for the antiferromagnetic Ising chain.
In this model, the coupling constant J is negative, so that β is replaced by −β|J |. The
prefactor B vanishes at a finite critical temperature such that β|J | = (ln 3)/2, as noted earlier
[30]. Below the critical temperature, the current J (M) (4.3) exhibits a minimum in the
unmagnetized state (M = 0), and two symmetric maxima for nonzero values of M such that
exp(−4β|J |) = 1 − 8/(3 − M2)2. This shape of the density–current characteristic curve is
responsible for the existence of a minimal current phase in a system with open boundaries
[33]. The prototype model studied in [33] is also equivalent to an antiferromagnetic Ising
chain, for a special value of the magnetic field.

In the nonequilibrium low-temperature coarsening regime, domain growth takes place at
the slow time scale t/ξ 2. The effective description of the dynamics on this scale is given in
terms of domain diffusion and annihilation [3] in the symmetric case, and of domain shifting
and annihilation [4, 5] in the asymmetric case. The motion of a tagged particle is very
similar in both cases, the variance of the displacement scaling as the mean square domain
length. Numerical simulations yield the values Q ≈ 0.28, R ≈ 0.36 for the corresponding
universal ratios (see (3.17) and (4.10)). The moves of a tagged particle can be of two types,
denoted by (a) and (b). The sum of moves (a), where the particle follows a domain, is
clearly asymptotically Gaussian, whereas moves of type (b), where the particle jumps from
one domain to another, have a more complex distribution a priori. Numerical results point
however towards a Gaussian dispersion in both cases.

The crossover time between the coarsening regime and the equilibrium (or steady state)
regime scales as the equilibration time, which becomes very large at low temperature (ξ � 1).
It increases indeed as ξ 5 for symmetric dynamics (see (2.5)), and as ξ 4 for asymmetric
dynamics (see (2.6)).

Table 3 summarizes the low-temperature scaling behaviour of the mean domain length
and of the variance of the displacement of a tagged spin, in the steady state and in the
nonequilibrium coarsening regime. For both types of dynamics, the dispersion of a tagged
particle (measured by 〈r2〉c) increases faster in the coarsening regime than at equilibrium. This
behaviour finds an explanation once interpreted in terms of the cage effect. In the coarsening
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Table 3. Dynamical regimes for low-temperature symmetric and asymmetric Kawasaki dynamics,
in the steady state, and in the nonequilibrium coarsening regime, with scaling behaviour (powers
of t and ξ ) of the typical domain length, and of the displacement variance of a tagged spin.

t L 〈r2〉
Symmetric

Coarsening (section 3.2) ξ2 � t � ξ5 (t/ξ2)1/3 (t/ξ2)2/3

Equilibrium (section 3.1) t � ξ5 ξ (t/ξ)1/2

Asymmetric
Coarsening (section 4.2) ξ2 � t � ξ4 (t/ξ2)1/2 t/ξ2

Steady state (section 4.1) t � ξ4 ξ (t/ξ)2/3

regime, the effective cage felt by a spin consists of a single domain. Its size is therefore a
typical domain length L, which increases as a power law, until it saturates to the equilibrium
correlation length ξ . In the steady state, the situation is similar to that of the SEP or ASEP.
The cage effect is a truly many-body effect, originating in the hard-core exclusion between
particles in a high-density regime, and specific to the one-dimensional geometry. Remarkably
enough, both the equilibrium behaviour of 〈r2〉 and the steady-state behaviour of 〈r2〉c involve
the ratio t/ξ .

The present work might be extended in several directions. Let us first mention the
crossover between symmetric and asymmetric dynamics, in the presence of a weak bias. In
the simple case of the mean domain length [4], the essential ingredient of this crossover
behaviour is the gambler’s ruin problem in the presence of a weak bias. Another facet of
the present problem concerns the two-time correlation of the displacement, C(t + τ, t) =
〈(r(t + τ) − r(t))2〉. In the low-temperature coarsening regime, this correlation function is
expected to exhibit a non-trivial dependence in the two-time plane.
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